
GPU Load Balancing Using Sparse Cartesian Grids: Making Interactive
WebGL Simulations of Complex Ionic Models Even Faster on 3D Heart

Structures

Abouzar Kaboudian1, Elizabeth M Cherry2, Flavio H Fenton3

1 Division of Biomedical Physics, US Food & Drug Administration, USA
2 School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA,

USA
3 School of Physics, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Cardiac modeling on supercomputers has limited ar-
rhythmia studies to groups with specialized access and ex-
pertise. We previously showed that WebGL programs can
simulate complex ionic models in 2D and 3D cardiac ge-
ometries in real time without the need for a supercomputer
by utilizing parallel hardware through the graphics pro-
cessing unit (GPU). In this work, we use sparse Cartesian
grids to balance GPU load, conserve memory, and avoid
unnecessary read/write operations, speeding up 3D sim-
ulations by up to a factor of 20. We also present a sim-
ple mapping technique to compress sparse data structures
into compact structures, which allows us to access texture
memory efficiently during the time-stepping portion of the
computation. As examples, we present the implementation
of phenomenological models for 3D atrial and ventricular
simulations, as well as the 41-state-variable OVVR human
ventricular cell model on 3D ventricular human anatomi-
cal structures. We show how our programs can be used to
initiate and terminate scroll waves in 3D interactively.

1. Introduction

Cardiac arrhythmias are a major cause of death and dis-
ability worldwide [1]. Atrial fibrillation (AF) and ventric-
ular fibrillation (VF) are two of the most common types
of cardiac arrhythmias [1]. VF can usually be treated
with an implantable cardioverter defibrillator (ICD) in at-
risk patients. However, there is no widely effective and
long-lasting treatment for atrial fibrillation (AF). Radiofre-
quency catheter ablation can interrupt abnormal and repet-
itive electrical activity in the heart, but it often requires
follow-up treatments. Ablation is effective for about 60%
of people with paroxysmal AF, but less than 30% of peo-

ple with persistent AF, and it is also not advisable for all
patients [2].

Numerical simulations of cardiac dynamics are be-
coming increasingly useful for developing patient-specific
treatments for AF, ventricular tachycardia (VT), and VF [3,
4]. These simulations have been facilitated by the contin-
uous growth in computer power and new methods allow-
ing simulations of the highly computationally demanding
problem of solving the voltage dynamics in cardiac tissue.

Over the years, multiple groups have developed soft-
ware to perform numerical simulations of cardiac arrhyth-
mias using complex models in 2D and 3D structures, such
as CARP [5], Chaste [6], and Beatbox [7]. While these
programs are robust, they all require downloading and in-
stallation, as well as access to parallel supercomputers
and multiple CPUs. Less complex but interactive codes
have also been developed for simulations ranging from
single-cell dynamics, such as Labheart [8] for ion chan-
nels and calcium transport in rabbit ventricular cells, and
Myokit [9] for a variety of cells.

Complex software can simulate realistic cardiac cell
models in anatomically accurate structures, but it requires
supercomputers and specialized knowledge. It also lacks
interactivity, so results are only available after the sim-
ulation has finished. In contrast, most available interac-
tive software can visualize the simulation as it occurs,
but the models used are simpler and less detailed. How-
ever, recent advances in graphics processing unit (GPU)
computing using WebGL have enabled the development
of fast, interactive, easy-to-use, and robust computational
tools that are independent of the operating system and the
device [10–12]. Modern GPUs are equipped with thou-
sands of powerful computational cores at affordable prices,
sometimes as low as a few hundred US dollars. Moreover,
GPUs enable computational acceleration on personal com-

Computing in Cardiology 2023; Vol 50 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2023.136



puters and even cell phones, rather than requiring remote
computer clusters [10, 11].

To achieve optimal GPU performance, the computa-
tional load on the GPU cores must be balanced [13].
However, when a Cartesian grid is used to represent the
heart geometry, only a fraction of the grid points rep-
resent the tissue. In our analysis of a virtual cohort of
24 patients [14], ventricular and atrial structures occupied
3.42± 0.72% and 10.39± 2.81% of the grid, respectively.
This sparse grid complicates load balancing and workload
distribution on the GPU. Moreover, the empty space may
increase the memory requirements for a GPU-accelerated
code.

Here, we present a method to compress the sparse grid
structure to create a balanced GPU code, thereby ensuring
that the memory requirements are associated only with the
tissue points, and all GPU cores are always utilized to up-
date the PDE on the tissue points. The resulting programs
are up to 20 times faster than when the grid is not com-
pressed.

2. Methods

We solve a simplified minimal atrial ionic model [15]
and a complex human ventricular model [16] in 3D
human atrial and ventricular structures from the online
database [14], respectively, using uniform Cartesian grids
with the same discretization of 0.026 cm. The grids were
converted from VTK to JSON using our in-house con-
version toolkit. The WebGL numerical implementations
rely on the Abubu.js library [10, 11], which is available
along with training resources for implementing WebGL
programs using it at https://www.abubujs.org/

Cable equation. The simulations are carried out by
solving the cable equation [17]:

∂tV = D∇2V −
∑

Ii/Cm, (1)

where V represents the membrane potential, D is the dif-
fusion coefficient, Iion are ionic currents described by
either a minimal model [15] or the 41-variable OVVR
model [16], and Cm is the membrane capacitance.

Using 2D textures to depict 3D grids. Texture memory
is a GPU data structure that can store physiological infor-
mation, such as state variables (e.g., membrane potential or
ionic concentrations), on each grid point. It consists of pix-
els with four color channels: red, green, blue, and alpha.
Each channel can represent a physical variable. Textures
can serve as input or output for shader programs [11].

To represent a 3D grid as a 2D texture, we generate an
array of sub-images by slicing the 3D grid in the third di-
mension and placing the sub-images on a 2D grid of sub-
images stored in the 2D texture. A simple utility function
can retrieve the data corresponding to each point in the 3D
space from the 2D texture.

To differentiate tissue points from empty spaces on the
3D grid, we store binary values of zero and one on a tex-
ture representing the anatomical structure. This domain
representation results in a sparse data structure, with many
pixels corresponding to non-tissue regions. Compression
can alleviate this storage inefficiency.

Compressing and uncompressing 2D textures For
compression, tissue pixels are stored in the smallest square
texture that can fit them. If the original (uncompressed)
texture consists of W ×H pixels and the compressed tex-
ture consists of w×w pixels, two auxiliary integer textures
with pixel sizes of W ×H (compressed-index-texture) and
w × w (full-index-texture) are used to store the mappings
between the compressed and uncompressed textures.

An index Ĩ of a pixel on the original texture is expressed
as

Ĩ ∈ {(i, j)|i, j ∈ Z, 0 ≤ i ≤ W, 0 ≤ j ≤ H}, (2)

and an index ĩ on the compressed texture is expressed as

ĩ ∈ {(i, j)|i, j ∈ Z, 0 ≤ i, j ≤ w}, (3)

where Z represents the set of integers.
Pixels in the compressed data structure are assigned by

traversing the pixels of the uncompressed data structure in
order, noting the index (Ĩ) of each tissue point and assign-
ing the next available pixel in the compressed texture, with
index (̃i). Index Ĩ of the compressed-index-texture stores
the value of ĩ, and index ĩ of the full-index-texture stores
the value of Ĩ .

For each pixel on the uncompressed data structure that
does not represent tissue, index Ĩ of the compressed-index-
texture stores the value of ĩ = (w,w) so that all non-tissue
grid points map to the last pixel of the compressed data
structure. Index ĩ = (w,w) of the full-index-texture stores
the sentinel value (−1,−1) to indicate that this point does
not map to tissue.

Using these mappings, all physiological information can
be stored in compressed textures of size w×w pixels, and
mappings in both directions are available for all tissue
points, with sensible handling of non-tissue points.

Applying zero-flux boundary conditions. Zero-flux
boundary conditions can be applied using the mirroring
technique, which uses ghost nodes [18]. When using the
central-differencing scheme, the required neighboring cell
of the stencil is used as is if it is available. However, if the
required neighbor in the computational cell is outside the
tissue, the neighbor’s value is mirrored with respect to the
center of the computation cell. This approach is equiva-
lent to setting the first derivative of the membrane poten-
tial equal to zero and applying a central differences scheme
around the central node along the normal to the tissue in-
terface.

Page 2

https://www.abubujs.org/


Visualizing the simulation results. The simulation re-
sults of the electrical excitations on the 3D tissue are visu-
alized using the built-in methods in the Abubu.js library.
These methods allow for transparency and cut planes to in-
spect the excitations deep within the tissue. All visualiza-
tion and simulation occur concurrently.

Interactivity. Combining WebGL with Abubu.js al-
lows JavaScript event handling and interaction with the
WebGL component. User interactions can be performed
through the GUI or mouse and touch interactions. The GUI
allows setting model and visualization parameters; activat-
ing the code editor; and starting, stopping, and initializing
simulations. Interactions can occur during simulations to
see the effect of changing parameters.

3. Numerical Results

We converted the atrial and ventricular sections of the
first human subject from the publicly available online co-
hort of 24 patients [14]. We used our in-house conversion
tool, Carp2Cartesian, to convert the tetrahedral finite el-
ement mesh in VTK format to a uniform Cartesian grid.
This conversion kit is available for use at
https://github.com/dbp-osel/Carp2Cartesian. The simu-
lations were generated using the WGLPackedCartesian
software package and can be downloaded from here:
https://github.com/dbp-osel/WGLPackedCartesian. Alter-
natively, the programs can run in the browser without in-
stallation here:
https://dbp-osel.github.io/WGLPackedCartesian.

Figure 1. Three views of an instance of functional reentry
on a human atrial structure: (A) View of the scroll wave
on opaque atria, (B) view of the scroll wave on transparent
atria, (C) cross-sectional view of the atrial structure.

Figure 1 shows three views of functional reentry on a hu-
man atrial structure. We used the P1 fitting of the minimal
model [15] as the cell model for this example. We initiated
the functional reentry by interactively creating an activa-
tion wave using the computer mouse. Then, we created
another activation in the refractory region of the first exci-
tation wave. The non-empty space of the atrial structure for
this subject was 3.24% of the cubical bounding box. The
GPU memory requirement for this simulation was less than
4% of the uncompressed version of the program. More im-
portantly, the simulations were more than 20 times faster

than their uncompressed counterparts, which allowed for
the real-time calculation of the reentry on this structure.

Figure 2. Simulation and visualization of tachycardia us-
ing the OVVR model. (A-C): three views of the same mo-
ment during tachycardia. (D-F): termination of the scroll
wave by a single far-field stimulus over 400 ms

Figure 2(A-C) show three views of the same instant dur-
ing an episode of tachycardia, including the scroll wave on
(A) opaque and (B) transparent ventricles and (C) cross-
sectional view of the ventricular structure with two scroll
waves. Note that the scroll wave may not appear in view
(A); however, it can be clearly seen on the septum in the
other views at the same time. Panels (D) to (F) show ter-
mination of the scroll wave with the application of a single
far-field stimulus: (D) the instant when the large far-field
stimulus is applied, (E) 150 ms after the stimulus is deliv-
ered, and (F) termination of the scroll-waves 400 ms after
the delivery of the stimulus. For this example, we used the
41-variable OVVR model [16] as the cell model. Reentry
was initiated interactively, similar to the previous exam-
ple. The non-empty space of this ventricular structure was
11.7% of the cubical bounding box. The GPU require-
ment for this simulation using compression was less than
13% of, and the speed was more than 7 times faster than,
the uncompressed version of the program.

4. Conclusion

In this article, we have shown that a compression algo-
rithm can significantly speed up simulations of electrical
activity on realistic anatomical structures. Previous ad-
vances in GPU and WebGL computing have already made
such simulations possible on personal computers and cell
phones, representing a significant improvement over tradi-
tional parallel processing. The compression algorithm pre-
sented here speeds up simulations by up to a factor of 20,
which is an order-of-magnitude improvement. This tech-
nique allows the use of higher-resolution grids and signifi-

Page 3

https://github.com/dbp-osel/Carp2Cartesian/
https://github.com/dbp-osel/WGLPackedCartesian/
https://dbp-osel.github.io/WGLPackedCartesian/


cantly conserves memory.

Disclaimer

The mention of commercial products, their sources, or
their use in connection with material reported herein is not
to be construed as either an actual or implied endorsement
of such products by the Department of Health and Human
Services.

The findings and conclusions in this article have not
been formally disseminated by the Food and Drug Ad-
ministration and should not be construed to represent any
Agency determination or policy.

This article reflects the views of the authors and should
not be construed to represent FDA’s views or policies.

Acknowledgments

We acknowledge support from the Division of Biomed-
ical Physics, Office of Science and Engineering Laborato-
ries, Center for Devices and Radiological Health, US Food
and Drug Administration. We also acknowledge support
for this study from NSF grant and CNS-2028677 and from
NIH grant 1R01HL143450.

References

[1] Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR,
Deo R, Floyd J, Fornage M, Gillespie C, Isasi C, et al.
Heart disease and stroke statistics-2017 update: a report
from the American Heart Association. Circulation 2017;
135(10):e146–e603.

[2] Scherr D, Khairy P, Miyazaki S, Aurillac-Lavignolle V, Pas-
cale P, Wilton SB, Ramoul K, Komatsu Y, Roten L, Jadidi
A, et al. Five-year outcome of catheter ablation of persis-
tent atrial fibrillation using termination of atrial fibrillation
as a procedural endpoint. Circulation Arrhythmia and Elec-
trophysiology 2015;8(1):18–24.

[3] Zahid S, Whyte KN, Schwarz EL, Blake III RC, Boyle PM,
Chrispin J, Prakosa A, Ipek EG, Pashakhanloo F, Halperin
HR, et al. Feasibility of using patient-specific models
and the “minimum cut” algorithm to predict optimal ab-
lation targets for left atrial flutter. Heart Rhythm 2016;
13(8):1687–1698.

[4] Galappaththige S, Gray RA, Costa CM, Niederer S, Path-
manathan P. Credibility assessment of patient-specific com-
putational modeling using patient-specific cardiac model-
ing as an exemplar. PLoS computational biology 2022;
18(10):e1010541.

[5] Vigmond EJ, Hughes M, Plank G, Leon LJ. Computational
tools for modeling electrical activity in cardiac tissue. Jour-
nal of Electrocardiology 2003;36:69–74.

[6] Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper
J, Corrias A, Davit Y, Dunn SJ, Fletcher AG, Harvey
DG, Marsh ME, Osborne JM, Pathmanathan P, Pitt-Francis
J, Southern J, Zemzemi N, Gavaghan DJ. Chaste: An

open source C++ library for computational physiology
and biology. PLOS Computational Biology March 2013;
9(3):e1002970.

[7] Antonioletti M, Biktashev VN, Jackson A, Kharche SR,
Stary T, Biktasheva IV. Beatbox—hpc simulation environ-
ment for biophysically and anatomically realistic cardiac
electrophysiology. PloS One 2017;12(5):e0172292.

[8] Puglisi JL, Bers DM. Labheart: an interactive computer
model of rabbit ventricular myocyte ion channels and ca
transport. AJP Cell Phys 2001;281(6):C2049–C2060.

[9] Clerx M, Collins P, de Lange E, Volders PG. Myokit: a
simple interface to cardiac cellular electrophysiology. Prog
in Biophy and Mol Bio 2016;120(1-3):100–114.

[10] Kaboudian A, Cherry EM, Fenton FH. Real-time interac-
tive simulations of large-scale systems on personal comput-
ers and cell phones. Sci Adv 2019;5(3):eaav6019.

[11] Kaboudian A, Cherry EM, Fenton FH. Large-scale inter-
active numerical experiments of chaos, solitons and fractals
in real time via gpu in a web browser. Chaos Solitons and
Fractals 2019;121:6–29.

[12] Kaboudian A, Cherry EM, Fenton FH. Real-time interac-
tive simulations of complex ionic cardiac cell models in 2d
and 3d heart structures with gpus on personal computers. In
2021 Computing in Cardiology (CinC), volume 48. 2021;
1–4.

[13] Cederman D, Tsigas P. On sorting and load balancing on
gpus. ACM SIGARCH Computer Architecture News 2009;
36(5):11–18.

[14] Strocchi M, Augustin CM, Gsell MA, Karabelas E, Neic
A, Gillette K, Razeghi O, Prassl AJ, Vigmond EJ, Behar
JM, et al. A publicly available virtual cohort of four-
chamber heart meshes for cardiac electro-mechanics sim-
ulations. PloS one 2020;15(6):e0235145.

[15] Lombardo DM, Fenton FH, Narayan SM, Rappel WJ.
Comparison of detailed and simplified models of human
atrial myocytes to recapitulate patient specific properties.
PLoS computational biology 2016;12(8):e1005060.

[16] O’Hara T, Virág L, Varró A, Rudy Y. Simulation of
the undiseased human cardiac ventricular action poten-
tial: model formulation and experimental validation. PLoS
Comput Biol 2011;7(5):e1002061.

[17] Fenton FH, Cherry EM, Hastings HM, Evans SJ. Real-time
computer simulations of excitable media. Biosystems 2002;
64(1-3):73–96.

[18] Chai M, Luo K, Wang H, Zheng S, Fan J. Imposing mixed
dirichlet-neumann-robin boundary conditions on irregular
domains in a level set/ghost fluid based finite difference
framework. Computers Fluids 2021;214:104772.

Address for correspondence:

Abouzar Kaboudian
abouzar.kaboudian@fda.hhs.gov
Division of Biomedical Physics
Office of Science and Engineering Laboratories
Center for Devices and Radiological Health
US Food & Drug Admisnistration

Page 4


	Introduction
	Methods
	Numerical Results
	Conclusion

